Tight closure of finite length modules in graded rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight Closure of Finite Length Modules in Graded Rings

In this article, we look at how the equivalence of tight closure and plus closure (or Frobenius closure) in the homogeneous m-coprimary case implies the same closure equivalence in the non-homogeneous m-coprimary case in standard graded rings. Although our result does not depend upon dimension, the primary application is based on results known in dimension 2 due to the recent work of H. Brenner...

متن کامل

Tight Closure in Graded Rings

This paper facilitates the computation of tight closure by giving giving upper and lower bounds on the degrees of elements that need to be checked for inclusion in the tight closure of certain homogeneous ideals in a graded ring. Differential operators are introduced to the study of tight closure, and used to prove that the degree of any element in the tight closure of a homogeneous ideal (but ...

متن کامل

Graded Rings and Modules

1 Definitions Definition 1. A graded ring is a ring S together with a set of subgroups Sd, d ≥ 0 such that S = ⊕ d≥0 Sd as an abelian group, and st ∈ Sd+e for all s ∈ Sd, t ∈ Se. One can prove that 1 ∈ S0 and if S is a domain then any unit of S also belongs to S0. A homogenous ideal of S is an ideal a with the property that for any f ∈ a we also have fd ∈ a for all d ≥ 0. A morphism of graded r...

متن کامل

Tight Closure in Non–equidimensional Rings

Throughout our discussion, all rings are commutative, Noetherian and have an identity element. The notion of the tight closure of an ideal was developed by M. Hochster and C. Huneke in [HH1] and has yielded many elegant and powerful results in commutative algebra. The theory leads to the notion of F–rational rings, defined by R. Fedder and K.-i. Watanabe as rings in which parameter ideals are t...

متن کامل

Sally Modules and Associated Graded Rings

To frame and motivate the goals pursued in the present article we recall that, loosely speaking, the most common among the blowup algebras are the Rees algebra R[It] = ⊕∞ n=0 I ntn and the associated graded ring grI(R) = ⊕∞ n=0 I n/In+1 of an ideal I in a commutative Noetherian local ring (R,m). The three main clusters around which most of the current research on blowup algebras has been develo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2006

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2006.05.009